where students come first!

Year 12-Mathematics Advanced
 Geometrical applications of
 Differentiation

Geometrical Applications of Differentiation Exam /37

1. (2 marks)

Find the primitive function of $y^{\prime}=2+\sqrt{x}$
2. (3 marks)

The second derivative of a function is $y^{\prime \prime}=3 x^{2}-2 x+1$, at $x=1$, the corresponding y-value is 0 and the first derivative is equal to 1 . Find the equation of the function.
3. (8 marks)

Consider the curve $\mathrm{y}=\mathrm{x}^{3}-6 x^{2}+9 x+1$.
i) find the coordinates of any stationary points and determine their nature ii) sketch the curve.
4. (2 marks)

The graph shows a sketch of $f(x)$. On the same set of axis draw a sketch of $f^{\prime}(x)$,
5. (3 marks)

For what value of x does $f(x)$ have a minimum turning point and Find where $f(x)$ has a point of inflexion and why.

6. (9 marks)

For the curve $y=x(x-4)^{2}$
i) find any stationary points and determine their nature
ii) find the point of inflexion
iii) Draw the graph shwoing all important features.
iv) for what values of x is y concave down for $-1 \leq x \leq 5$?
7.
(2 marks)
Find an equation for the tangent to the curve $y=\frac{\sqrt{x}}{2}$ at $x=1$.
8. (3 marks)

Find an equation for the tangent to the curve $\mathrm{y}=\sqrt{(6-2 x)^{3}}$ at $\mathrm{x}=2$.
9. (2 marks)

Given the data:
when $x<2, f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$
when $x=2, f^{\prime}(x)=0$ and $f^{\prime \prime}(x)=0$
when $x>2, f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$
draw a sketch of $y=f(x)$ given that $f(2)=0$
10. (3 marks)

Given that the area of a rectangle is $A=12 x-\frac{x^{2}}{2}$, find the dimension of this rectangle so that its area is a maximum, where its length is twice its width.

